

26 – 28 mars 2024 PAU

JOURNÉES RECHERCHE INNOVATION

Biogaz Méthanisation

Valorisation des digestats par extraction des fractions biostimulantes : Effets sur la croissance du seigle d'hiver et la biodiversité du sol (Projet ValoDig - Janv. 2022 à juin 2024)

Chaves B.^{1,2}, Richard-Molard C.², L. Vieublé Gonod², Thevenin N.¹, Lot M.C.³, <u>Salomez M.⁴</u>, Joimel S.², Houot S.², Sambusiti C.^{4*}

- ¹ Department of Agronomy, Rittmo Agroenvironment, F-68025 Colmar, France
- ² Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120 Palaiseau, France
- ³ TotalEnergies, PERL Pôle d'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47–RD 817, 64170 Lacq, France
- ⁴ TotalEnergies, CSTJF- Avenue Larribau, 64018 Pau, France

CONTEXTE

Digestats et biostimulants

• De nouvelles voies de valorisation des digestats sont recherchées pour :

Répondre aux contraintes techniques et limitations liées à l'épandage des digestats (législation, logistique, surface disponible, qualité digestat)

Diversifier les revenus des unités de méthanisation

- Un biostimulant est une substance ou un microorganisme appliqué sur les plantes dont le but est d'améliorer l'efficience nutritionnelle, la tolérance au stress abiotique et/ou des traits agronomiques, en dehors de la nutrition NPK. ²
- Les molecules connues dans les digestats possédant des propriétés biostimulantes sont les substances humiques ³ (i.e.: acides fulviques et acides humiques), les phytohormones⁴, les molécules hormones-like⁵, les protéines et acides aminés ⁶

Nouveautés

Modèle plante : Seigle hiver (CIVE)

Propriétés biostimulantes des extraits en sol

Effet des extraits sur la biodiversité du sol

Objectif principal : Evaluer les propriétés biostimulantes et l'intérêt de l'extraction des substances humiques issues des digestats

METHODE GENERALE

Digestat brut Digestat liquide Digestat liquide Digestat solide Digestat solide Digestat humiques

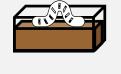
Test germination

- Taux de germination
- Dynamique

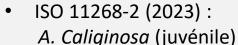
Essai plante - hydroponie

- Matière sèche/fraiche
- Racine (WinRhizo)
- Indice foliaire (LAI)
- Effet dose
- Taux C et N

Essai plante - Sol



- Matière sèche/fraiche
- Indice foliaire (LAI)
- Hauteur tige
- Nombre talles/feuilles
- Taux C et N

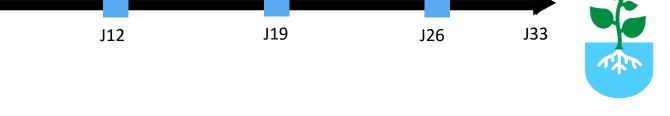


Biodiversité

- Microbiologie -Activité enzym.
- Microbiologie -Séquençage
- Collemboles
- Nématodes

Ecotoxicologie - Essai normé

ISO 11267 (2014) : Collemboles - F. candida.



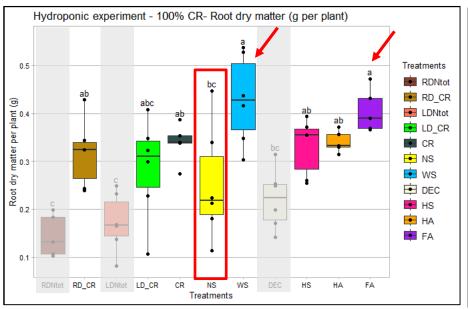
METHODE HYDROPONIE

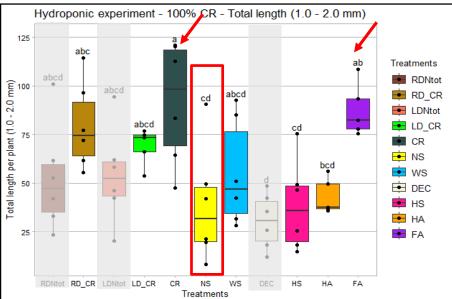
J5

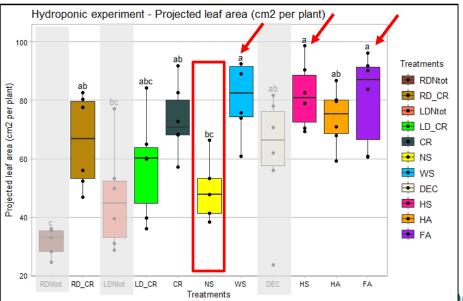
Chambre culture Seigle hiver - var. turbogreen 6 réplicats par modalités

Témoins Extraits Sans extraction

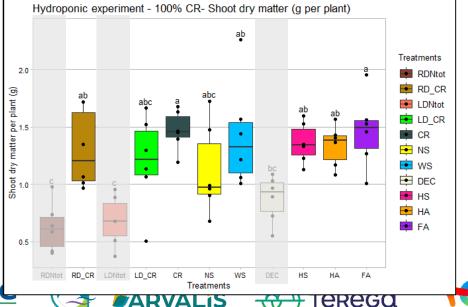
Dose 100% éq. Ref. Commerciale	Digestat Brut (RD)	Digestat Liquide (LD)	Extrait soluble (WS)	Substances humiques (HS)	Acides humiques (HA)	Acides fulviques (FA)	Réf. Commerciale (CR)	Solution nutritive (NS)
Volume appliqué (ml/plante)	0.4	1.1	7.7	6.5	4.3	14.6	0.02	-
Quantité C-humic substances (mg/plante)	2.1	2.1	-	2.1	2.1	2.1	2.1	-
Quantité C total (mg/plante)	5.2	10.6	2.1	2.1	2.1	2.1	2.1	-
Total N (mg/plante)	105.2	105.6	107.9	105.6	105.6	105.3	105.0	105.0
Total P (mg/plante)	15.5	15.5	15.6	15.6	15.6	15.7	15.5	15.5
Total K (mg/plante)	117.0	116.8	119.2	117.2	117.2	117.2	118.4	117.2







Effet biostimulant - hydroponie - dose 100%



ASSOCIATION TECHNIQUE ENERGIE ENVIRONNEMENT

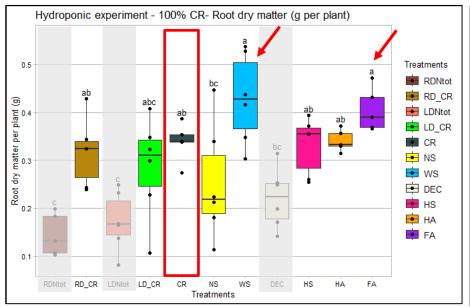
APESA

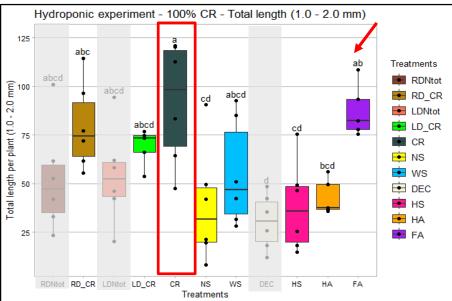
*Analyse de variance (ANOVA)

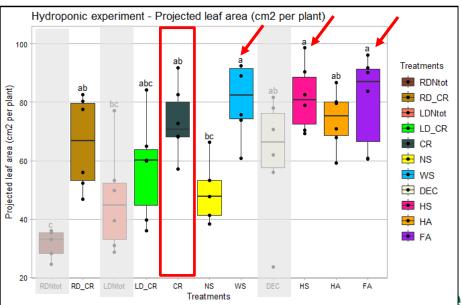
et test post-hoc Tukey's HSD

Effet biostimulant (>NS):

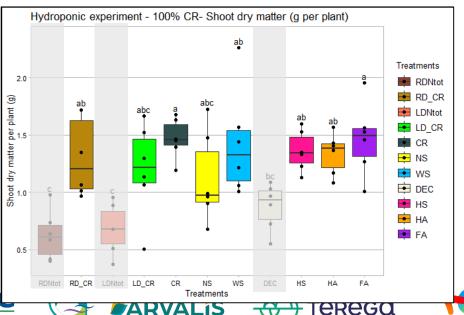
Extrait soluble (WS)
Extrait acide fulvique (FA)
Substances humiques (HA)
Référence commerciale (CR)


Sur:


- + matière sèche racine
- + indice foliaire
- + longueur racine (1-2mm)



Efficacité - hydroponie - dose 100%



ASSOCIATION TECHNIQUE ENERGIE ENVIRONNEMENT

APESA

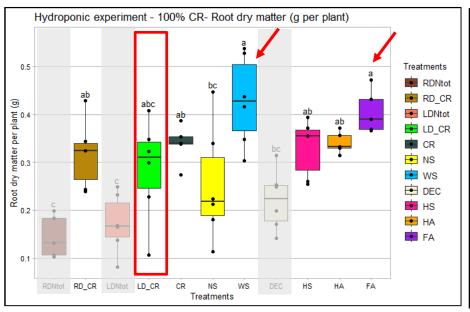
Effet biostimulant (>NS):

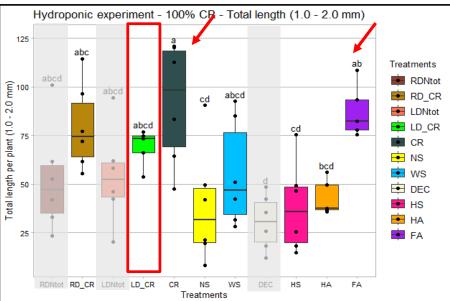
Extrait soluble (WS)
Extrait acide fulvique (FA)
Substances humiques (SH)
Référence commerciale (CR)

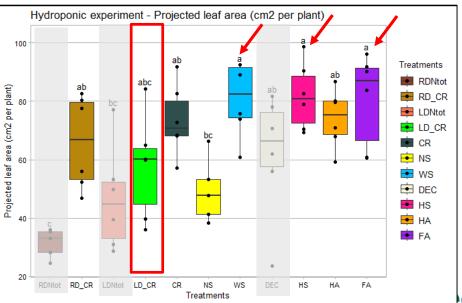
Sur:

- + matière sèche racine
- + indice foliaire
- + longueur racine (1-2mm)

Efficacité:

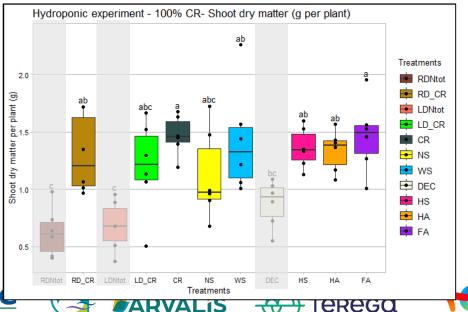

Effet similaire à la référence commerciale (=CR)





*Analyse de variance (ANOVA) et test post-hoc Tukey's HSD

Intérêt extraction - hydroponie - dose 100%



ASSOCIATION TECHNIQUE

APESA

*Analyse de variance (ANOVA)

et test post-hoc Tukey's HSD

Effet biostimulant (>NS):

Extrait soluble (WS)
Extrait acide fulvique (FA)
Substances humiques (SH)
Référence commerciale (CR)

Sur:

- + matière sèche racine
- + indice foliaire
- + longueur racine (1-2mm)

Efficacité:

Effet similaire à la référence commerciale (=CR)

Intérêt extraction

Effet similaire au digestat (=LD_CR)

METHODE GENERALE

Digestat brut Digestat liquide Digestat solide Digestat solide Digestat solide Digestat solide Digestat solide

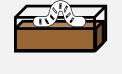
Test germination

- Taux de germination
- Dynamique

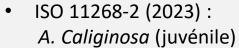
Essai plante - hydroponie

- Matière sèche/fraiche
- Racine (WinRhizo)
- Indice foliaire (LAI)
- Effet dose
- Taux C et N

Essai plante - Sol



- Matière sèche/fraiche
- Indice foliaire (LAI)
- Hauteur tige
- Nombre talles/feuilles
- Taux C et N

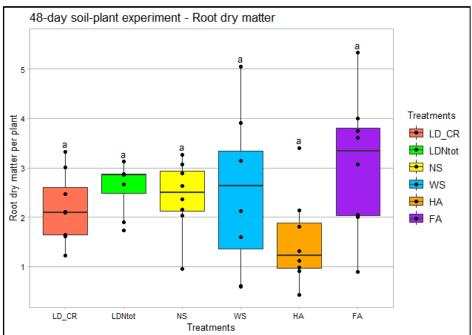


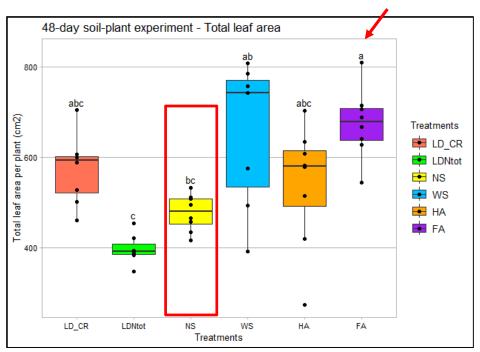
Biodiversité

- Microbiologie -Activité enzym.
- Microbiologie -Séquençage
- Collemboles
- Nématodes

Ecotoxicologie - Essai normé

Signature (1994) | Signature (19





Effet biostimulant - Sol - dose 100%

*Sol: 50% sol QualiAgro / 50% sable - Réplicats: 8 par modalité

Pas d'effet observé sur biomasse racinaire

Effet biostimulant (>NS):

Extrait acide fulvique (FA)

Sur:

+ indice foliaire

^{*}Analyse de variance (ANOVA) et test post-hoc Tukey's HSD

METHODE GENERALE

Extraction biostimulant Digestat Extrait soluble brut **UNITE A** Digestat liquide Acides fulviques Digestat Acides solide humiques **UNITE C**

Ecotoxicologie - Essai normé

ISO 11268-2 (2023):

ISO 11267 (2014):

A. Caliginosa (juvénile)

Collemboles - F. candida.

Test germination

- Taux de germination
- Dynamique

Essai plante - hydroponie

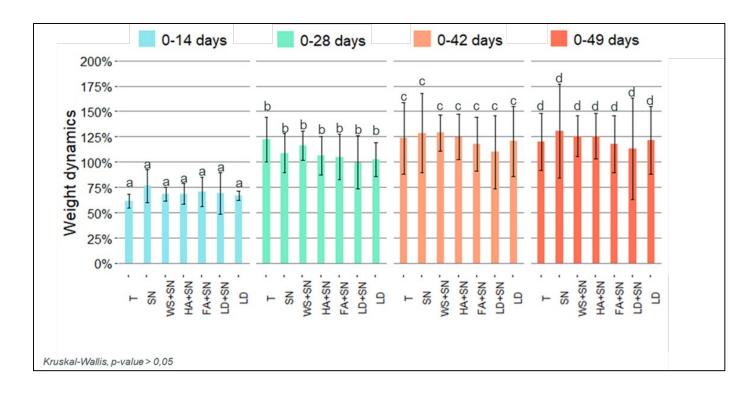
- Matière sèche/fraiche
- Racine (WinRhizo)
- Indice foliaire (LAI)
- Effet dose
- Taux C et N

Essai plante - Sol

- Matière sèche/fraiche
- Indice foliaire (LAI)
- Hauteur tige
- Nombre talles/feuilles
- Taux C et N

Biodiversité

- Microbiologie -Activité enzym.
- Microbiologie -Séquençage
- Collemboles
- Nématodes



Effet sur la prise de masse de A. caliginosa (Ver de terre)

*Suivant norme ISO 11268-1 (2015) et 11268-2 (2023)

1- T

Water

2 - NS

Nutritive solution only

3 - WS + SN

Water solubles extract

4 - HA + SN

Humic acid extract

5 - FA + SN

Fulvic acid extract

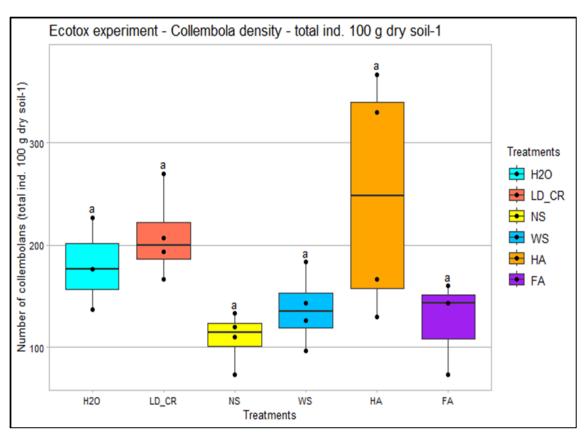
6 - LD + SN

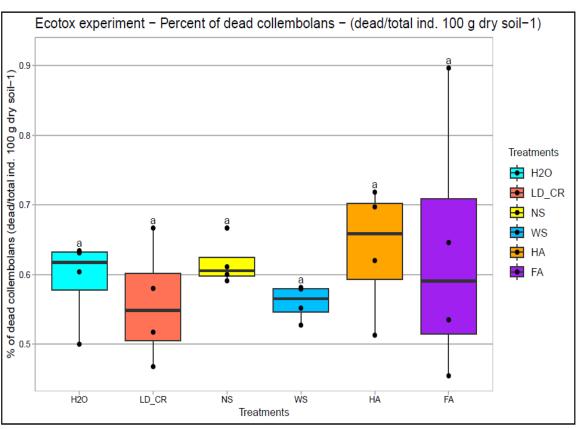
Liquid digestate (2.2 kg N/ha)

7- LD

Liquid digestate only (62 kg N/ha)

• Pas d'effet sur la prise de masse de A. caliginosa





Effet sur les collemboles (test non normé)

*Analyse de variance (ANOVA) et test post-hoc Tukey's HSD

Pas d'effet sur le nombre d'individus totaux et la mortalité des collemboles

CONCLUSIONS

- Effet biostimulant : significatif pour l'extrait soluble et l'extrait acide fulvique en hydroponie principalement sur les racines et l'indice foliaire peu d'effet en sol
- **Efficacité** : similaire à la référence commerciale (Humifirst)
- Intérêt de l'extraction des substances humiques : non significatif dans les conditions de l'étude
- Ecotoxicologie : pas d'effet négatif observé des digestats et des extraits sur la prise de masse de juvéniles d' A. Caliginosa et sur la mortalité des collemboles

Merci

REFERENCES

- ¹ EC, 2019. European Council. Regulation (EU) 2019/ of the European Parliament and of theCouncil of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) no 1069/2009 and (EC) no1107/2009 and Repealing Regulation (EC) no 2003/2003. p. 114
- ² Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. *Scientia horticulturae*, 196, 3-14.
- ³ Guilayn, F., Benbrahim, M., Rouez, M., Crest, M., Patureau, D., & Jimenez, J. (2020). Humic-like substances extracted from different digestates: First trials of lettuce biostimulation in hydroponic culture. *Waste Management*, 104, 239-245.
- ⁴Li, X., Guo, J., Dong, R., Ahring, B. K., & Zhang, W. (2016). Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Science of the Total Environment, 544, 774-781.
- ⁵ Scaglia, B., Pognani, M., & Adani, F. (2015). Evaluation of hormone-like activity of the dissolved organic matter fraction (DOM) of compost and digestate. *Science of the Total Environment*, *514*, 314-321.
- ⁶ Feng, H., Qu, G. F., Ning, P., Xiong, X. F., Jia, L. J., Shi, Y. K., & Zhang, J. (2011). The resource utilization of anaerobic fermentation residue. *Procedia Environmental Sciences*, 11, 1092-1099.

