

26 – 28 mars 2024 PAU

JOURNÉES RECHERCHE INNOVATION

Biogaz Méthanisation

Impact des conditions opératoires sur la stabilité des digestats et leur devenir dans les sols

David Fernández-Domínguez¹, <u>Logan Sourdon¹</u>, Margaud Pérémé¹, Felipe Guilayn², Jean-Phillipe Steyer¹, Dominique Patureau¹, Julie Jimenez¹

¹INRAE, LBE, ² CIRSEE SUEZ

Introduction: Contexte et Objectifs

Contexte:

- 131 kg déchets alimentaires/an/habitant en Union Européenne; contenant une grande partie de matière organique (MO) labile [1]
- Nécessité de contrôler les propriétés des digestats pour maximiser leur valeur agronomique [2]
- Différents paramètres (typologie substrat, conditions opératoires) pouvant impacter ces propriétés lors de la digestion anaérobie (DA)
- → Besoin d'isoler l'impact des conditions opératoires sur la qualité des digestats [3]
- Pratique répandue en méthanisation : augmentation du taux de charge organique (TCO) avec diminution du temps de rétention hydraulique (TRH) afin d'augmenter la production en biogaz
- Potentiel **impact** sur les digestats : i) **stabilité** ii) **émissions de GES** durant épandage et stockage iii) **lixiviation de** nutriments [4][5]

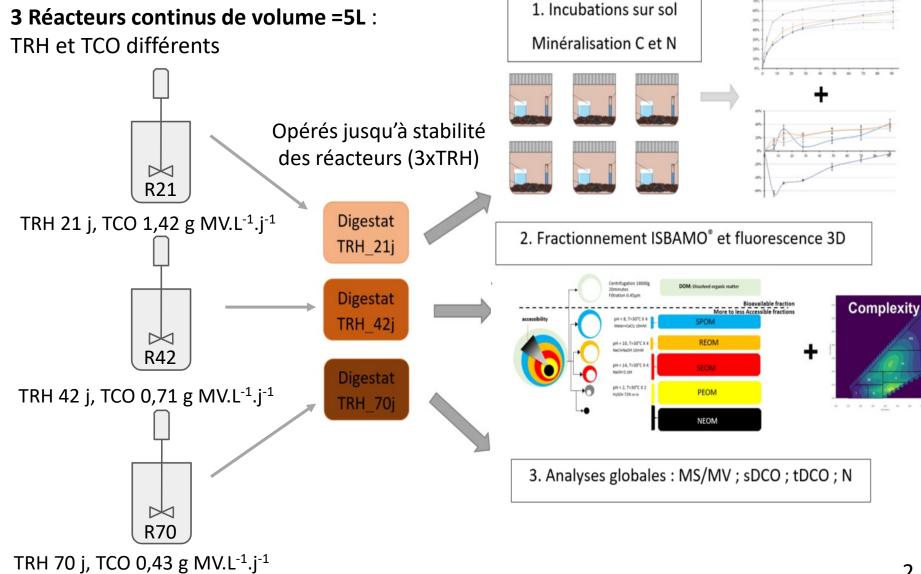
Objectifs de l'étude :

- → Etudier l'impact du TRH et du TCO sur la stabilité et la valeur fertilisante des digestats
- Fixer le type de substrat et sa concentration pour isoler l'impact des conditions opératoires
- Caractériser la MO pour expliquer les mécanismes mis en jeu au cours de la digestion anaérobie (DA)

Matériel et méthodes

Co-digestion

Typologie du substrat fixe:

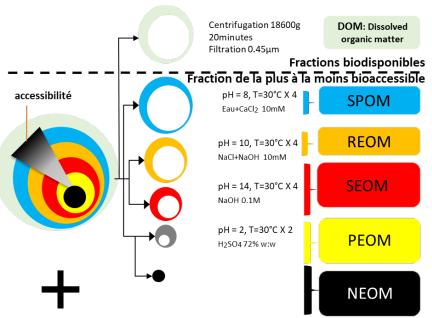

→ Déchets alimentaires + Foin

Concentration du substrat fixe : → 30 g MV.L⁻¹

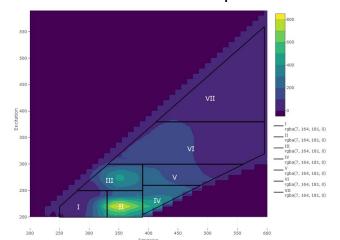
Proportion de co-digestion

→ Déchets alimentaires : Foin

70 : 30 en %MS



Matériel et méthodes


Méthode ISBAMO [6]:

Incubations sur sols [7]:

1. Fractionnement ISBAMO® → Bioaccessibilité

2. Fluorescence 3D → Complexité

Enceinte thermostatée à 28°C

Protocole issu de la norme AFNOR 2009 XPU 44-163 [7]:

- Digestats et substrat lyophilisés-broyés à
 1mm
- ➤ 2 g C/kg de sol sec
- Conditions contrôlées T°C et humidité

Minéralisation du C:

- Solution de soude 0,5M, piège à CO₂
- Mesure C inorganique par conductivité

Minéralisation du Norg:

Extraction au KCl puis analyses colorimétriques (NH₄⁺, NO₂⁻, NO₃⁻)

Résultats et discussion: Production des digestats

Tableau 1: Performances des réacteurs lors des 6 dernières semaines d'opération

Réacteurs	CH ₄ (%)*	Prod. de biogaz (NmL biogaz.g MV ⁻¹)	Prod. de méthane (NmL CH ₄ .g MV ⁻¹)	Abattement des MV (%)
R21	61,54 ±0,02 ^a	495,50 ±14,19 ^a	346,24 ±10,00°	70,35 ±1,35 ^a
R42	61,66 ±0,01 ^a	515,70 ±17,20 ^b	361,06 ±12,04 ^b	75,83 ±1,35 ^b
R70	61,47 ±0,01 ^a	556,28 ±21,80°	388,28 ±15,21 ^c	76,07 ±1,87 ^b

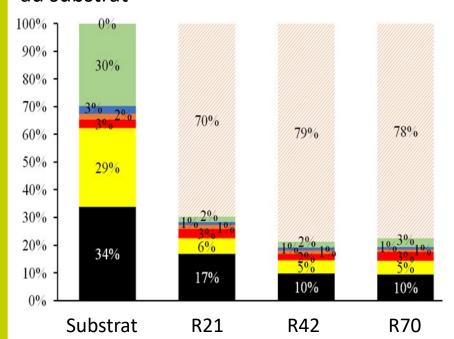
Meilleures performances avec des TRHs plus élevés / TCO plus faibles :

- i) Abattement des MV
- ii) Productions spécifiques de biogaz et de méthane

<u>Tableau 2:</u> Principales caractéristiques des digestats stables produits

Paramètres	R21	R42	R70	Substrat
MS (% w/w)	1,32 ±0,03	1,14 ±0,04	1,25 ±0,06	3,56 ±0,30
MV (% w/w)	0,89 ±0,04	0,73 ±0,08	0,77 ±0,06	3,30 ±0,42
DCOt (g.L ⁻¹)	11,21 ±0,87	8,83 ±0,75	9,31 ±0,86	42,90 ±6,10
TAN (g.L ⁻¹)	0,16 ±0,02	0,28 ±0,03	0,58 ±0,04	0,14
TKN (g.L ⁻¹)	0,85 ±0,08	0,83 ±0,14	0,97 ±0,06	0,82
C/N	9,1	10,3	8,3	19,4

- Digestats relativement similaires
 (R21 vs R42 & R70)
- Diminution importante des rapports C/N



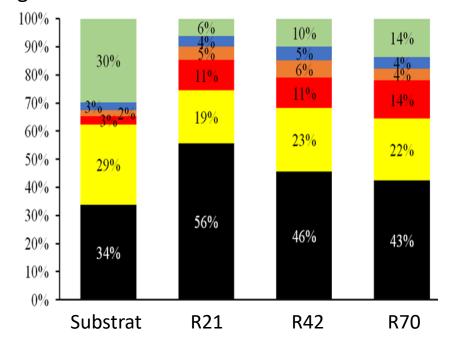

Fractionnement ISBAMO®: bilans en DCO

Fig. 1 : Bilan en DCO des digestats par rapport au substrat

- Abattement de la MO + important pour les digestats R42 et R70 → matière + labile
- **Diminution** significative en DCO dans les fractions **DOM**, **PEOM** et **NEOM**

Fig. 2 : Comparaison des profils ISBAMO® des digestats et du substrat

- TRHs + grands augmente l'accessibilité de la MO
- Augmentation en DCO de la fraction DOM pour les digestats R42 et R70
- Profils ISBAMO relativement similaires (R42 et R70)

Biodégradibilité

DOM:

Dissolved Organic Matter

- SPOM:
 Soluble from Particulate
 Organic Matter
- REOM:

 Readily Extractable Organic

 Matter
- **SEOM**:

 Slowly Extractable Organic

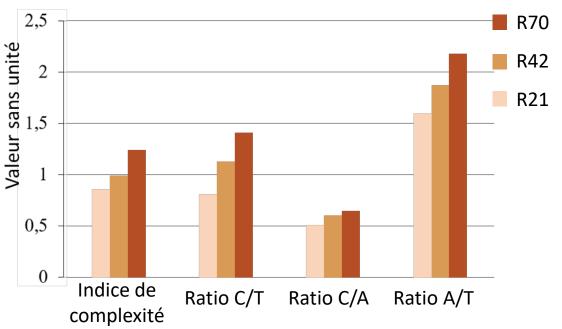
 Matter
- PEOM:

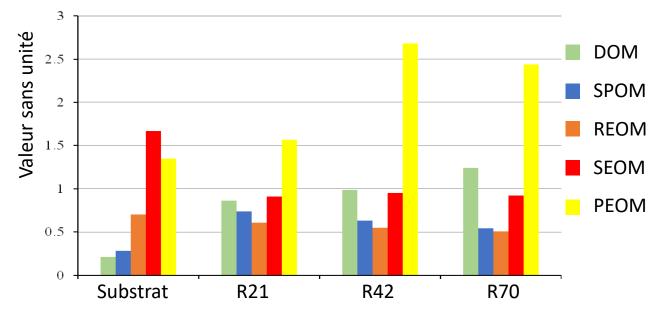
 Poorly Extractable Organic

 Matter
- **NEOM** :

 Non Extractable Organic

 Matter





Fluorescence 3D sur les fractions ISBAMO® des digestats

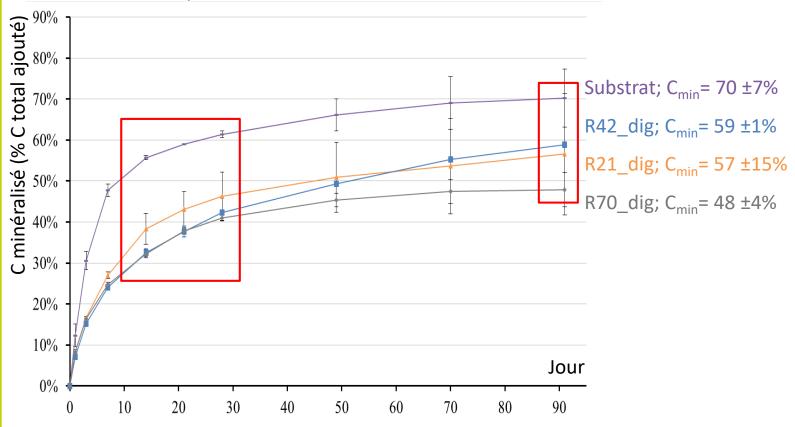
Fig. 3 : Indices et ratios de complexité sur la fraction soluble des digestats, calculés à partir des résultats en fluorescence 3D

Fig. 4 : Indices de complexité de fluorescence des fractions ISBAMO® sur les digestats et le substrat

Ratios = substances de type humiques/substances de type labiles

→ TRH + élevés → degrés de complexité + grands

- TRH + élevés → fraction PEOM + complexe : R42/R70 vs R21 (hypothèse hydrolyse de composés récalcitrants)
- Digestion anaérobie augmente la complexité des fractions les + accessibles (DOM)



Incubations sur sol: Minéralisation du carbone (C)

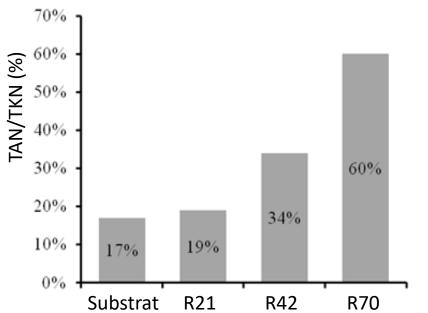
Fig. 5: Minéralisation nette du C des digestats produits à différents TRH/TCO au cours des incubations sur sols

30 premiers jours d'incubations :

Digestat **R21** montre une minéralisation du C légèrement + élevée, par rapport aux digestats **R42** et **R70**

Dernier jour d'incubation (J90):

- Digestat avec TRH + grand montre une minéralisation + faible (R42 vs R70)
- 2. R21 et R42 ne sont pas différents
- → Meilleure stabilité de la matière organique
- → Impact du TRH/TCO sur la valeur amendante des digestats



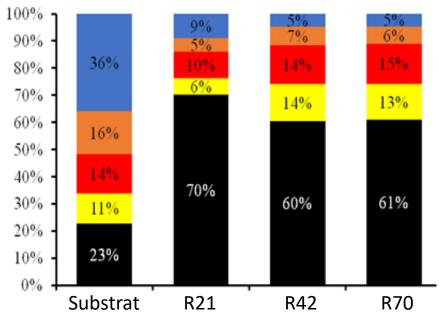
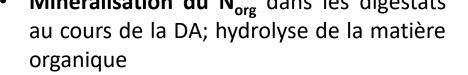

Fractionnement ISBAMO®: Bilan sur l'azote

Fig. 6a: Rapport TAN/TKN des digestats et du Substrat (Total Ammonia Nitrogen/Total Kjeldahl Nitrogen)

- Minéralisation du N_{org} dans les digestats
- Effet + important pour les TRHs élevés
- → levier pour la valeur fertilisante

Fig. 6b: Comparaison des profils ISBAMO® des digestats et du substrat, bilan N sur la fraction solide

- N_{org} non minéralisé dans les fractions moins accessibles **PEOM et NEOM**
- Tendances similaires au bilan sur DCO: impact TRH sur accessibilité et R42 et R70 similaires



REOM : Readily Extractable Organic

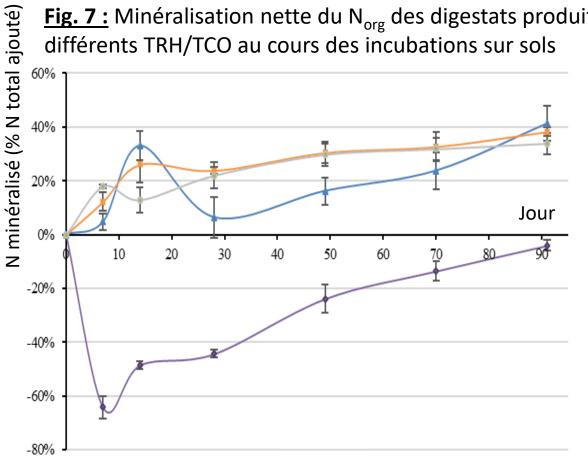
Particulate

Matter SEOM: Slowly Extractable Organic

SPOM:

Soluble from

Organic Matter


Matter PEOM:

Poorly Extractable Organic Matter

■ NEOM: Non Extractable Organic Matter

Incubations sur sol: Minéralisation de l'azote (N)

Fig. 7: Minéralisation nette du N_{org} des digestats produits à différents TRH/TCO au cours des incubations sur sols

	Substrat	R70_dig	R42_dig	R21_dig
N_{\min}	-4 ±2%	34 ±4%	41 ±7%	38 ±2%
C/N	19,4	8,3	10,3	9,1

Immobilisation de l'azote pour le substrat :

- Matière organique **labile et** C/N élevé (19,4)
- → Quantité de N **insuffisante** pour dégrader la MO apportée, N minéral provenant du sol extrait et rendu indisponible par les micro-organismes

Impact de la digestion anaérobie sur la valeur fertilisante des digestats

Pas d'impact des TRH/TCO sur la valeur de Norg minéralisable des digestats

Mais **impact** des TRH/TCO disponible sur le $(N_{min}+N_{ora}_minéralisable)$

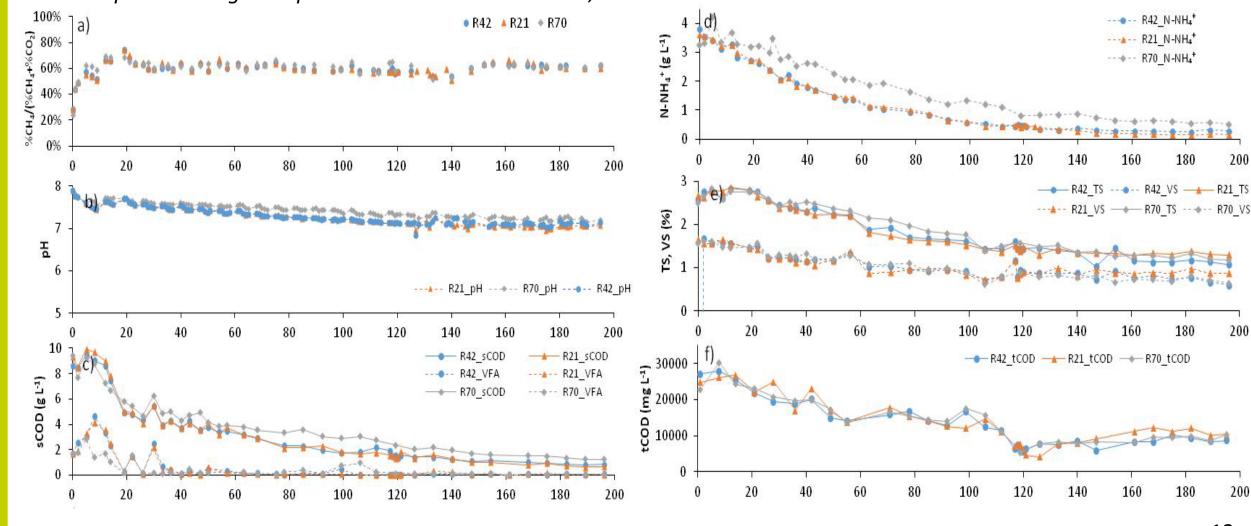
Conclusion et Perspectives

- Impact des conditions opératoires TRH /TCO:
 - TRH + grands fractions solubles + complexes & minéralisation de l'azote organique + importante dans les digestats
 - Effet sur l'accessibilité de la matière organique (ISBAMO®)
 - Cependant des digestats relativement similaires sont obtenus en terme de C et N minéralisation à longterme → typologie du substrat et performances
- Résultats potentiellement non-généralisables à d'autres typologies de substrats
- Etudes pouvant être appliqués pour d'autres types de substrats et d'autres conditions opératoires
- Mise en avant de l'importance de considérer la qualité du digestat attendue pour optimiser la digestion anaérobie et sélectionner les conditions opératoires appliquées, en plus de la performance du digesteur

MERCI de votre attention

Références

- [1] Ben Tahar I, Fickers P (2021) Metabolic engineering of microorganisms for urban waste valorization. Case Stud Chem Environ Eng 4:100148. https://doi.org/10.1016/j.cscee.2021.100148
- [2] Guilayn F, Rouez M, Crest M, et al (2020) Valorization of digestates from urban or centralized biogas plants: a critical review. Rev Environ Sci Biotechnol 19:419–462. https://doi.org/10.1007/s11157-020-09531-3
- [3] Menardo S, Gioelli F, Balsari P (2011) The methane yield of digestate: Effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresour Technol 102:2348–2351. https://doi.org/10.1016/j.biortech.2010.10.094
- [4] Lehtomäki A, Huttunen S, Lehtinen TM, Rintala JA (2008) Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour Technol 99:3267–3278.
- [5] Ahlberg-Eliasson K, Westerholm M, Isaksson S, Schnürer A (2021) Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission From Digestates. Front Energy Res 9. https://doi.org/10.3389/fenrg.2021.740314
- [6] Jimenez J, Aemig Q, Doussiet N, et al (2015) A new organic matter fractionation methodology for organic wastes: Bioaccessibility complexity characterization 194:344-353. and for treatment optimization. Bioresour Technol https://doi.org/10.1016/j.biortech.2015.07.037
- [7] AFNOR, 2009. Standard XP U 44-163. Amendements organiques et supports de culture Caractérisation de la matière organique par la minéralisation potentielle du carbone et de l'azote



Annexes

Performance des réacteurs au cours de l'expérience :

1. composition biogaz 2. pH 3. sDCO 4. N-NH4+ 5. MS, MV 6. tDCO

Annexes

Calculs des indices de complexité de fluorescence 3D

$$V_{f}(i)(A.U./mg COD.L^{-1}) = \frac{V_{f-raw}(i)}{COD_{sample}^{*}\left(\frac{S(i)}{\sum_{i=1}^{7}S(i)}\right)}$$

$$P_f(i)(\%) = \frac{100 * V_f(i)}{\sum_{i=1}^7 V_f(i)}$$

$$FCI {=} \frac{\sum_{i=4}^{7} V_f(i) \! |}{\sum_{j=1}^{3} V_f(i)}$$

- Vf_raw est la zone de fluorescence brute (A.U./mg O2 L-1), COD_{sample} est la concentration en DCO de l'échantillon (mg O₂.L⁻¹), and S(i) est l'aire (nm2).
- Le volume de fluorescence de chaque zone Vf(i), le % de fluorescence pour chaque zone Pf(i), et le ratio de complexité de fluorescence (FCI), qui réprésente le ratio entre le % de fluorescence des zones de hautes complexité (IV-VII) par rapport aux zones de faibles complexité (I-III) sont calculés à partir d'un algorithme fait maison sur Scilab 5.5.2

