


# Exemple en géothermie profonde

## La centrale de Soultz La centrale de Rittershoffen

4 mai 2023 ATEE



Eléonore Dalmais, ES-Géothermie Représentante AFPG Grand-Est





## **Plan**

- Présentation d'ES-Géothermie
- Généralités sur la géothermie profonde dans le Fossé rhénan
- La centrale de Soultz-sous-Forêts (électricité)
- La centrale de Rittershoffen (chaleur industrielle)

# RAPIDE PRÉSENTATION D'ES-GÉOTHERMIE



# Electricité de Strasbourg

est une Filiale à 88 % de 😽



#### Chiffres clés 2021

- Plus de 1 300 collaborateurs
- 550 000 clients électricité
- 110 000 clients gaz
- 1 700 clients chaleur (BtoB)
- Chiffre d'affaires : 871 M€
- Résultat net courant : 60 M€

Energéticien alsacien depuis plus de 120 ans, ES est la 1ère ELD française



#### **MAISON MERE ET FONCTIONS TRANSVERSES**

Électricité de Strasbourg

STRASBOURG ELECTRICITE RESEAUX

DISTRIBUTION D'ELECTRICITE

Strasbourg Électricité Réseaux



FOURNITURE D'ENERGIES

ÉS Énergies Strasbourg



SERVICES ENERGETIQUES

ÉS Services Énergétiques



ENERGIES RENOUVELABLES

ÉS Biomasse ÉCOGI GEIE Soultz ÉS Développement Durable ÉS Géothermie



## **ES-Géothermie**

Bureau d'études & exploitant en géothermie profonde

**Exploration** Forage Boucle Construction Remise en Concept **Exploitation** état du site de surface exploratoire géothermale de surface Intervention sur l'ensemble du cycle de vie d'une centrale de géothermie profonde R&D Conseil et expertise Formation Assistance à Maîtrise d'Ouvrage Maîtrise d'œuvre **Opérations** Promotion et **Etudes** Développement industrielles de la filière **Activités Dossiers** opérationnelles réglementaires

# ESG est l'opérateur de 2 centrales géothermiques en Alsace

#### Soultz-sous-Forêts

- Production d'électricité
- 1,7 MWe
- 3 forages profonds @ 5000 m
- Q>30L/s T>150° C
- 12 GWh d'électricité par an
- Économie de 7 000 t de CO<sub>2</sub>



#### Rittershoffen

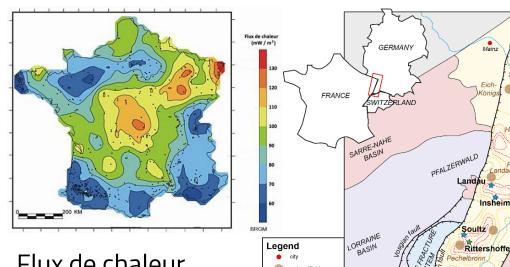
- Production de chaleur industrielle
- 24 MWth de chaleur
- 2 puits profonds @ 2 600m
- Q>70L/s T>168° C
- 190 GWh d'énergie par an
- Économie de 40 000 t de CO2



# GÉNÉRALITÉS SUR LA GÉOTHERMIE PROFONDE DANS LE FOSSÉ RHÉNAN

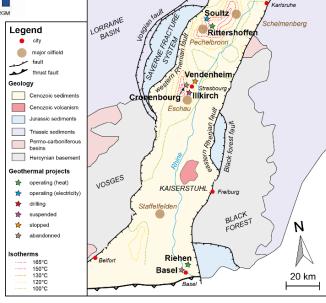


## Pourquoi le Fossé rhénan?


Trebur

Hofheim

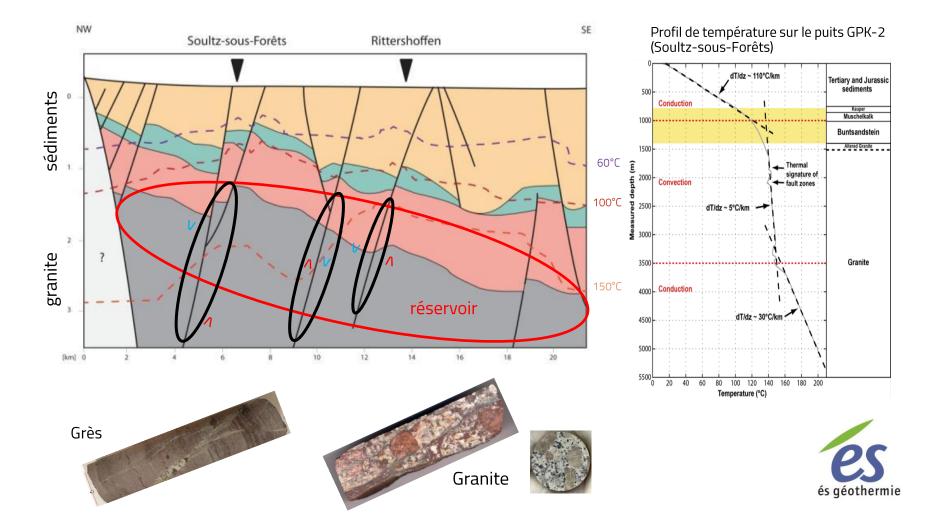
∯Brühl


Graben-Neudorf

Bruchsal

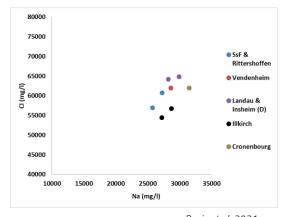


- Le Fossé rhénan supérieur appartient au système de rift ouest-européen
- Anomalies thermiques connues avec un gradient thermique jusqu'à 100°C/km
- Développement de la technologie « Enhanced Geothermal System » sur le projet de Soultzsous-Forêts, dans le socle granitique profond (5 km)
- Nouvelles centrales développées sur la base de ces connaissances, qui visent l'interface entre les sédiments et le socle fracturés (moins profond)

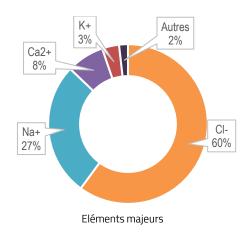

Flux de chaleur

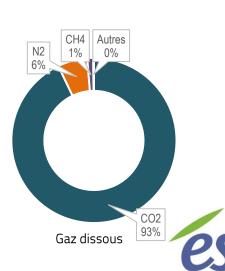


Modifié d'après Glaas, 2021


## Convection dans le réservoir fraturé

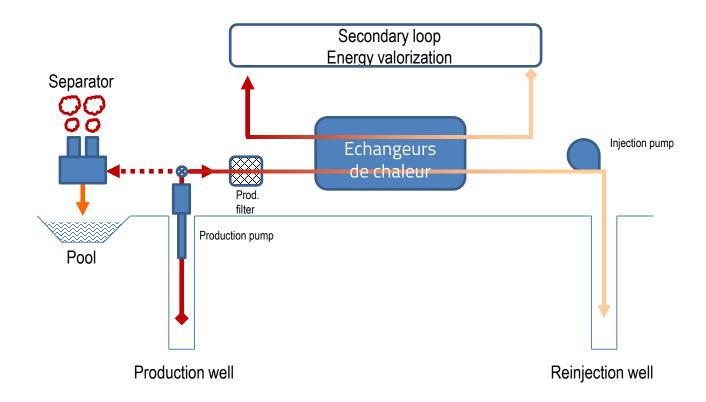
### Roches naturellement fracturées et altérées





# L'eau géothermale

- Salinité ~100g/L, pH ~ 5.0
- Saumure Na-Ca-Cl, avec une importante concentration de K
- Composition homogène dans le Fossé rhénan
- Gas-Liquid Ratio 1 Nm³/m³, essentiellement du CO₂, maintenu dissous (sous pression)
- Li concentration ~170 mg/L
- Température > 150°C











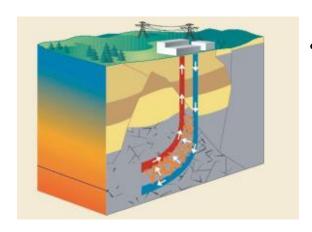

# **Boucle géothermale**



Utilisation de la chaleur (boucle secondaire)

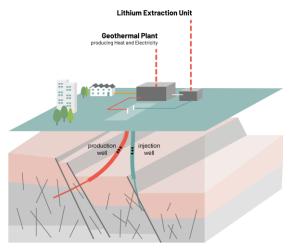
- Production d'électricité (SsF)
- Fourniture de chaleur haute température (Rittershoffen)
  - Coproduction électricité et chaleur (projet Illkirch)






# LA CENTRALE DE SOULTZ-SOUS-FORETS

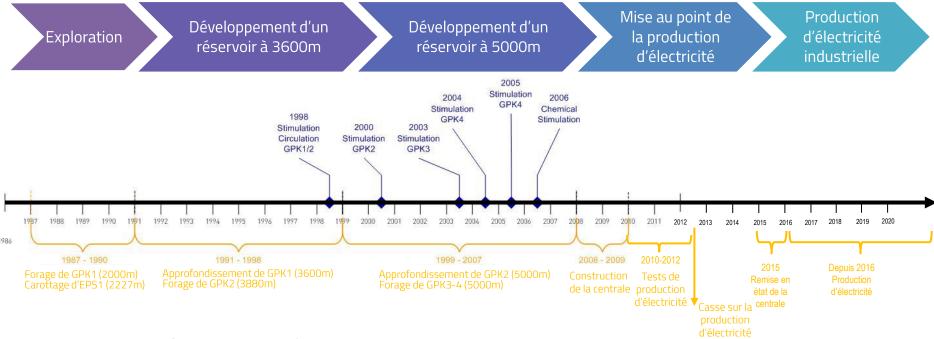
Le pilote scientifique européen pour la technologie EGS




# L'évolution du concept géothermique de Soultz



#### HDR


- Hot Dry Rock
- Exploitation de la chaleur des roches dures profondes
- Haute temperature à très grande profondeur
- Indépendante de la localisation (et de la géologie!)
- Echangeur de chaleur créé artificiellement en profondeur



#### EGS

- Enhanced / Engineered Geothermal System
- Eau geothermale qui circule dans un réservoir
- Granite naturellement altéré et fracturé
- Amélioration de la connexion du puits au réservoir par stimulation
- Circulation de l'eau amplifiée pendant l'exploitation (pompe de production)

## Historique de la centrale de SsF



Pilote scientifique européen : 1987 – 2012 Industrialisation de la production d'électricité : depuis 2015


- 3 forages profonds @ 5000 m (1 producteur, 2 injecteurs)
- Débit>30L/s; T>150°C
- 1,7 MWe
- 12 GWh d'électricité par an
- Économie de 7 000 t de CO<sub>2</sub>



# **Boucle géothermale**



Echangeurs de chaleur (preheaters and evaporator)



Séparateurs



Puits d'injection (GPK3 et GPK4)



Filtres de production

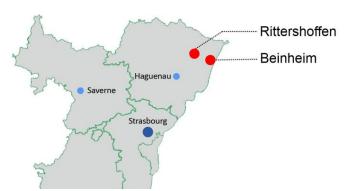


Puits de production (GPK2) avec une pompe à arbre long



## Production d'électricité




Turbine Alternateur Régénérateur és géothermie



## LA CENTRALE DE RITTERSHOFFEN



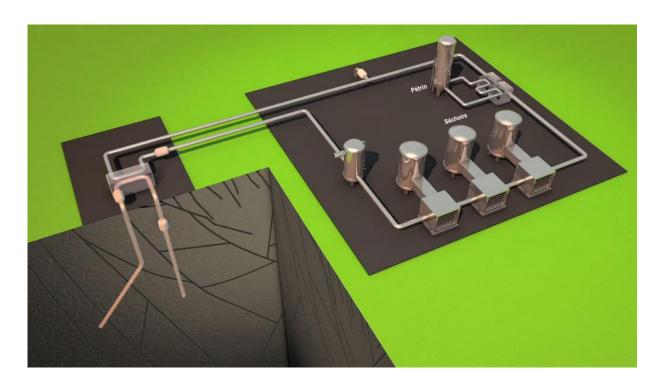
# Vue d'ensemble du projet



# Les données du projet géothermique (Rittershoffen)

- 2 puits 2500 3000m de profondeur
- Température 170°C
- Débit > 80 L/s
- Puissance thermique 24 MW
- Taux de disponibilité > 95%
- 190 GWh d'énergie par an
- 40 000 tCO<sub>2</sub>eq évités /an

### Client: bio-raffinerie Roquettes Freres (Beinheim)


- Un acteur de classe internationale dans la fabrication d'amidon
- Engagé dans la chimie verte
- Besoins en énergie du site de Beinheim : ~ 100MWth
- Projet géothermique: couvre 25% du besoin en énergie



### Canalisation de transport de la chaleur

 15 km de conduites entre Rittershoffen (site de production) et Beinheim (site industriel)

# Principe de fonctionnement



- Doublet géothermique : un puits producteur et un puits injecteur
- Des échangeurs : la chaleur est transmise à un fluide secondaire (eau douce)
- Cette eau circule en boucle entre la centrale de géothermie et l'usine Roquette
- Valorisation de la chaleur en cascade à l'usine Roquette



# Historique de la centrale de Rittershoffen

Etudes préliminaires 2006-2012

1<sup>er</sup> forage sept-déc 2012 Etudes additionnelles 2013

2<sup>ème</sup> forage mars - juillet 2014 Centrale et réseau de chaleur 2014 - 2015 Mise en service 2016

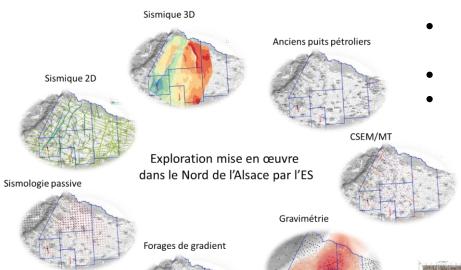




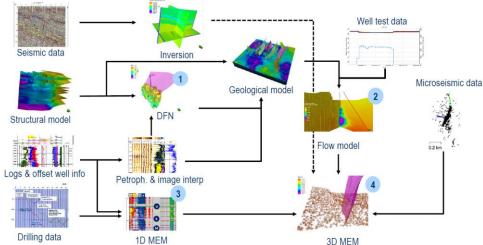


La centrale est détenue par ÉS (40%), Roquette Frères (40%) et la Caisse des dépôts (20%) 57M€ ont été investis pour sa mise en œuvre (étude, forages, centrale, canalisation, usine) Elle a bénéficié de 25M€ du Fonds Chaleur de l'Ademe



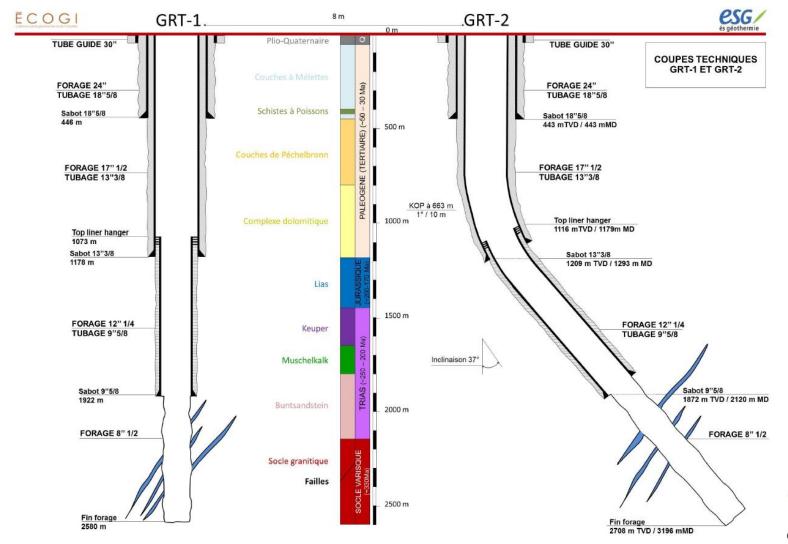







## **Exploration du sous-sol**




- Etudes de données historiques (forage et sismique pétrolières)
  Acquisitions géophysiques
  Modélisation géologique
  Identification de la ressource et ciblage
- - des puits
  - Probabilité de succès des puits (débit & température)
  - Simulation de la production de chaleur



és géothermie

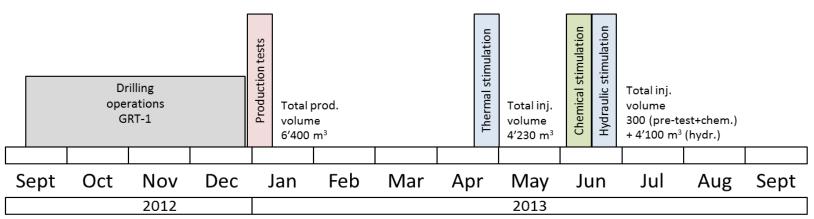
# Les forages





# GRT-1 Essais hydrauliques et développement du puits

### Essais hydraulique GRT-1


- Productivité initiale faible (< 0,5L/s/bar)</li>
- Injectivité initiale faible
- Le seuil économique n'est pas atteint

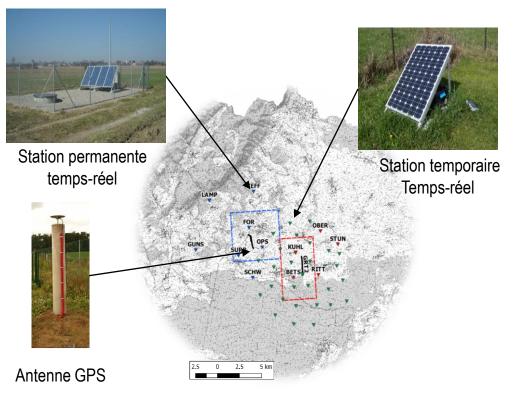
### Développement du puits GRT-1

Stimulation thermique

Stimulation chimique

Stimulation hydraulique




Baujard et al 2017 Geothermics

#### Résultats

Pas de sismicité ressentie Très bons résultats du développement du puits Multiplication par 5 de l'injectivité de GRT-1 Seuil de viabilité économique atteint -> planification GRT-2 actée

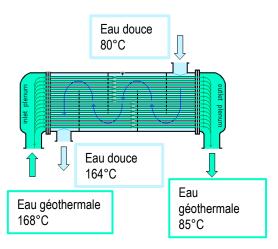


# Suivi sismologique



- En milieu fracturé, la géothermie profonde est susceptible d'induire des vibrations du sol
- Réseau de stations sismologiques en temps réel
- Aucun séisme ressenti sur les 2 centrales d'ÉS depuis le début de l'exploitation en 2016

Tirs de carrière
Seuil
SNCF BTP Norme Eurocode 8 (maison)
géothermie


| Magnitude           | < 2           | 2,0 à 2,9 | 3,0 à 3,9 | 4,0 à 4,9   | 5,0 à 5,9 | 6,0 à 6,9  |
|---------------------|---------------|-----------|-----------|-------------|-----------|------------|
| PGV (mm/s)          | < 1           | 1 à 11    | 11 à 34   | 34 à 81     | 81 à 160  | 160 à 310  |
| Dommages potentiels | Néant         | Néant     | Néant     | Très légers | Légers    | Modérés    |
| Vibration perçue    | Non ressentie | Faible    | Légère    | Modérée     | Forte     | Très forte |



# **Boucle géothermale**



Echangeurs de chaleur





# Boucle de transport de chaleur



#### Une boucle de 15 km entre la centrale de Rittershoffen et l'usine à Beinheim

- une forêt (Natura 2000)
- une voie ferrée
- une autoroute
- six routes départementales
- deux cours d'eau
- sept gazoducs
- un oléoduc



Aller haute T°C
Double enveloppe
Pertes thermiques
< 4°C/15 km

Vide et laine de roche Détection des fuites



Retour basse T°C Simple enveloppe Pertes thermiques 1,5°C/15 km

Tube pré-isolé Détection des fuites





# Impact CO<sub>2</sub>

- Depuis 2016, la centrale a produit 1000 GWh de chaleur (190 GWh/an)
- Analyse du Cycle de Vie : de l'exploration jusqu'à la déconstruction
  - <5 gCO<sub>2</sub>/kWh
  - Gaz : 250 gCO<sub>2</sub>eq/kWh
  - Réduction de 40 000 tCO<sub>2</sub>eq/ an





## Conclusion

## Depuis sa mise en fonctionnement en 2016, la centrale de Ritterhoffen

- Fonctionne 24h/24 7j/7
- Taux de disponibilité ~95%
- Chaleur fournie > 1 000 GWh
- $CO_2$  évité > 250 000  $tCO_{2eq}$
- Aucun événement sismique ressenti





Des questions?

## **MERCI POUR VOTRE ATTENTION**

